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SDN Introduction 
• Centralized approach 

• SDN mainly divided into control plane and data plane 

 

• SDN uses the OpenFlow protocol  

 

• SDN switch has a flow table, trying to have a rule match against the received packets 
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SDN Introduction 
Framework: 
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Problem Statement 
• Network Security 

• The easiest way of  compromising a network is to launch a flooding attack (ex: TCP SYN 
flooding, UDP flooding etc ). 

 

• SDN Security Problems 

• When a new flow arrives, the SDN switch will send a packet-in message to the SDN 
controller. 

• However, intentional abusing the controller (or say packet-in message) may incur the security 
problem. 
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Problem Statement 
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PROTOCOL DESIGN 

• Our experiment can be divided into two phases 

 

• First, consider a bunch of simple UDP packets transmitted to the 
switch.  

• Then, we began to do the code implementation on the simulated switch 
and controller, and evaluated the performance and the security of 
our defense mechanism. 
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PROTOCOL DESIGN 
Attack Model:  

• In the case of no match found, the controller will perform a broadcast 
to ask whether there is a match for the purpose of IP addresses. 

  

• The attacker can assign a random value to the destination field in the 
packet. 

   

 
 

                                                                                                                                                  UDP Packet Section. 8 

def generate_ip(): # Create random IP  
return str(random.randint(0, 255)) + '.'\ + str(random.randint(0, 255)) + '.'\ 
+ str(random.randint(0, 255)) + '.'\ + str(random.randint(0, 255)) 



PROTOCOL DESIGN 
 

9 

Total Rate  CPU(s) Load avg. 

Normal state 5 kbits/sec 0.6 us 0.32 

Attack state 6100 ↑  
kbits/sec 

27 ↑ us 0.87 ↑ 



Defense 
Architecture 

r3 : The number of packets  
receive by the port 

t3 : The number of packets 
sent by the port 
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Defense Architecture 
• Our analysis model has two conditions. 

 

• If the received packet (r3) > send packets (t3): 

• This means that the destination of the sending packet does 
not exist in the current network, resulting in the 
controller constantly broadcasting.  

 

• If the packet is sent (t3)  > =  receive packets (r3): 

• The controller can handle the packet-in message and 
broadcast packets. 

 
   

 

11 



Defense Architecture 

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 

def  _packet_in_handler(self, ev): 

if  ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of  %s bytes", 

ev.msg.msg_len, ev.msg.total_len) 

. 

. 

if(r3 > t3): 

        actions = [] 

. 

. 

elif(t3 >= r3): 

       flooding 
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UDP Defense Section 



Defense Architecture 

body = ev.msg.body 

        self.logger.info('datapath         port     ' 

                        'rx-pkts  rx-bytes rx-error ' 

                        'tx-pkts  tx-bytes tx-error') 

         self.logger.info('---------------- -------- ' 

                          '-------- -------- -------- ' 

                         '-------- -------- --------') 

         for stat in sorted(body, key=attrgetter('port_no')): 

 self.logger.info('%016x %8x %8d %8d %8d %8d %8d %8d',  

                ev.msg.datapath.id, stat.port_no, 

                stat.rx_packets, stat.rx_bytes, stat.rx_errors, 

                stat.tx_packets, stat.tx_bytes, stat.tx_errors 
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EXPERIMENTS 
• Experiment Setting 

• In the experiment. we use mininet to simulate the SDN OpenFlow 
switch, and use RYU to simulate the controller.  

• Moreover, IPerf, TOP, IPTRAF are used as monitoring tools. 

 

• For the network topology, we considered two physical hosts and 
a controller.  

• They are on different physical machines for ensuring more 
accurate measurement. 
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EXPERIMENTS 
• Defense Achievements 

 

• In our experiment, we consider two cases (with and without 
attack) and observe the difference between these two cases. 
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EXPERIMENTS 
Network bandwidth and controller performance comparison 
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  IPerf Top IPtraf 

No Defense 
TX bps:412 
Bytes/s 

CPU(s): 27.2 us 
Total rate: 

6139.0 Kbits/sec 
4846.4 packets/sec 

Defense 
TX bps: 33 
Bytes/s 

CPU(s): 14.8 us 
Total rate: 

2790.7 Kbits/sec 
1861.8 packets/sec 



Related Work 

•  Comparison of Defense 
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  FloodGuard UDP 

No Defense 7 Mbps 6 Mbps 

Defense 2 Mbps 2 Mbps 



CONCLUSION 
• The proposed defense resist against the UDP flooding with a minor modification in SDN 

module. 

 

• The countermeasure particularly designed for only UDP flooding works with better 

performance 
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Let us know if  you have any comments or questions. 

Thank you for listening. 

       Mailbox: 

s1036023@mail.yzu.edu.tw 

s1036010@mail.yzu.edu.tw 

chiamuyu@saturn.yzu.edu.tw 
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Question 

• Given the operation flow chart probing the switches 
periodically, it would be a naturally raised question how 
much overhead this approach would introduce.  

• Furthermore, this question extends to what is the 
parameters we should consider to trade off security and 
performance compromise. 
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Answer 

• Using this method, we are only at the expense of request 
packet for some time. The following mechanisms to 
facilitate the analysis. 

• Although this sacrifices some benign request, but in 
exchange for increased security. 

• But in the time of the attack, a benign request to wait for 
a short time. 
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Qustion 

• The conditions, 'If r3 > t3' or 't3 >= r3' over simplifies 
or ignores lots of other possibilities considering the 
nature of UDP traffic ( eg. streaming applications). 
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Answer 

• Perhaps while watching the movie, the flow slightly. 
But the normal traffic. 

 

• This time we use to calculate packet per second to reduce 
false positives. 
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