
Counteracting UDP Flooding Attacks

in SDN

 Yung-Hao Tung, Hung-Chuan Wei, Chia-Mu Yu

Yuan Ze University

Outline

• SDN overview

• Problem statement

• Proposed method

• Experiments

2

SDN Introduction
• Centralized approach

• SDN mainly divided into control plane and data plane

• SDN uses the OpenFlow protocol

• SDN switch has a flow table, trying to have a rule match against the received packets

3

SDN Introduction
Framework:

4

Bandwidth

Management

AP

Virtual

Network

Function

Access

Control

Mechanisms

SDN Controller/Network Management

Switch

Switch Switch

Switch

API Openflow

Control
plane

Data
plane

Problem Statement
• Network Security

• The easiest way of compromising a network is to launch a flooding attack (ex: TCP SYN
flooding, UDP flooding etc).

• SDN Security Problems

• When a new flow arrives, the SDN switch will send a packet-in message to the SDN
controller.

• However, intentional abusing the controller (or say packet-in message) may incur the security
problem.

5

Problem Statement

6

Controller

Host1 Host2 Host3

Switch

Flooding attack

… …

Flooding attack

Simulation SDN Network Attack Graph

… …

PROTOCOL DESIGN

• Our experiment can be divided into two phases

• First, consider a bunch of simple UDP packets transmitted to the
switch.

• Then, we began to do the code implementation on the simulated switch
and controller, and evaluated the performance and the security of
our defense mechanism.

7

PROTOCOL DESIGN
Attack Model:

• In the case of no match found, the controller will perform a broadcast
to ask whether there is a match for the purpose of IP addresses.

• The attacker can assign a random value to the destination field in the
packet.

 UDP Packet Section. 8

def generate_ip(): # Create random IP
return str(random.randint(0, 255)) + '.'\ + str(random.randint(0, 255)) + '.'\
+ str(random.randint(0, 255)) + '.'\ + str(random.randint(0, 255))

PROTOCOL DESIGN

9

Total Rate CPU(s) Load avg.

Normal state 5 kbits/sec 0.6 us 0.32

Attack state 6100 ↑
kbits/sec

27 ↑ us 0.87 ↑

Defense
Architecture

r3 : The number of packets
receive by the port

t3 : The number of packets
sent by the port

10

Initial Settings

Start analysis mode

Drop packet

Normal network

status

If r3

> t3

If t3

>=

r3

YES

YES

NO

Defense architecture flow chart

Defense Architecture
• Our analysis model has two conditions.

• If the received packet (r3) > send packets (t3):

• This means that the destination of the sending packet does
not exist in the current network, resulting in the
controller constantly broadcasting.

• If the packet is sent (t3) > = receive packets (r3):

• The controller can handle the packet-in message and
broadcast packets.

11

Defense Architecture

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

def _packet_in_handler(self, ev):

if ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of %s bytes",

ev.msg.msg_len, ev.msg.total_len)

.

.

if(r3 > t3):

 actions = []

.

.

elif(t3 >= r3):

 flooding

12

UDP Defense Section

Defense Architecture

body = ev.msg.body

 self.logger.info('datapath port '

 'rx-pkts rx-bytes rx-error '

 'tx-pkts tx-bytes tx-error')

 self.logger.info('---------------- -------- '

 '-------- -------- -------- '

 '-------- -------- --------')

 for stat in sorted(body, key=attrgetter('port_no')):

 self.logger.info('%016x %8x %8d %8d %8d %8d %8d %8d',

 ev.msg.datapath.id, stat.port_no,

 stat.rx_packets, stat.rx_bytes, stat.rx_errors,

 stat.tx_packets, stat.tx_bytes, stat.tx_errors
13

Return packets on all ports

EXPERIMENTS
• Experiment Setting

• In the experiment. we use mininet to simulate the SDN OpenFlow
switch, and use RYU to simulate the controller.

• Moreover, IPerf, TOP, IPTRAF are used as monitoring tools.

• For the network topology, we considered two physical hosts and
a controller.

• They are on different physical machines for ensuring more
accurate measurement.

14

EXPERIMENTS
• Defense Achievements

• In our experiment, we consider two cases (with and without
attack) and observe the difference between these two cases.

15

EXPERIMENTS
Network bandwidth and controller performance comparison

16

 IPerf Top IPtraf

No Defense
TX bps:412
Bytes/s

CPU(s): 27.2 us
Total rate:

6139.0 Kbits/sec
4846.4 packets/sec

Defense
TX bps: 33
Bytes/s

CPU(s): 14.8 us
Total rate:

2790.7 Kbits/sec
1861.8 packets/sec

Related Work

• Comparison of Defense

17

 FloodGuard UDP

No Defense 7 Mbps 6 Mbps

Defense 2 Mbps 2 Mbps

CONCLUSION
• The proposed defense resist against the UDP flooding with a minor modification in SDN

module.

• The countermeasure particularly designed for only UDP flooding works with better

performance

18

Let us know if you have any comments or questions.

Thank you for listening.

 Mailbox:

s1036023@mail.yzu.edu.tw

s1036010@mail.yzu.edu.tw

chiamuyu@saturn.yzu.edu.tw

19

mailto:s1036023@mail.yzu.edu.tw
mailto:s1036010@mail.yzu.edu.tw
mailto:chiamuyu@saturn.yzu.edu.tw

Question

• Given the operation flow chart probing the switches
periodically, it would be a naturally raised question how
much overhead this approach would introduce.

• Furthermore, this question extends to what is the
parameters we should consider to trade off security and
performance compromise.

20

Answer

• Using this method, we are only at the expense of request
packet for some time. The following mechanisms to
facilitate the analysis.

• Although this sacrifices some benign request, but in
exchange for increased security.

• But in the time of the attack, a benign request to wait for
a short time.

21

Qustion

• The conditions, 'If r3 > t3' or 't3 >= r3' over simplifies
or ignores lots of other possibilities considering the
nature of UDP traffic (eg. streaming applications).

22

Answer

• Perhaps while watching the movie, the flow slightly.
But the normal traffic.

• This time we use to calculate packet per second to reduce
false positives.

23

