

Software-Defined Fabrics for loT at Scale

Alberto Leon-Garcia
University of Toronto
Scientific Director, NSERC SAVI Research Network
alberto.leongarcia@utoronto.ca

Context

- The Challenge
 - By 2050
 - Over 70% of world population will live in cities
 - Occupy 2% of landmass
 - Consume 75% of resources
- The Opportunity
 - To enable livable and sustainable cities and urban regions
 - economic, environmental, social
- Our Focus
 - Platforms to enable Smart City Applications
 - Converged Cloud computing, SDN, and IOT

IOT at Scale

A Layered Architecture

Traditional ITS Data Flow

Road Authorities

Traffic Cameras

Lane Usage Status

Transit Operators

• Bus Movement Information

Public Safety Agencies Accident Reports

Municipalities

Construction Incidents

Environment Canada

Weather Conditions

Road Sensors

Road Conditions

Traffic Management Center

Supporting Public & Private Providers

Demo: CVST Portal of Greater Toronto Area Traffic

http://portal.cvst.ca

A Layered Architecture

Application-Enablement in Multi-tier Clouds

Multi-Tiered Cloud: Core, Smart Edges, Access, vCPE, fog

Management of Software-Defined Multitier Cloud

- Computing, Networking, FPGAs, GPUs, Software-Defined Radio
- Integrated real-time resource measurement and monitoring

Software-Defined Network Services

Integrated secure networking over SDN and legacy networks

vCPE/Sensors

 virtual Customer Premises Edge (vCPE) and sensors, local resources at customer premises, managed from the Smart Edge

Application Platform:

- E2E orchestration of applications across federated infrastructures
- Spanning core, Internet, smart edge, programmable access, and sensors

SAVI Testbed

- Cross-Canada Testbed; L2 backbone
- Federated with GENI in the USA, Two SAVI nodes in US, L2 connectivity
- One SAVI node in Korea

SAVI SDI Architecture & JANUS Manager

- Each resource type controlled by specialized controllers
- Each controller communicates with logically central C&M framework
- SDI Manager, Topology Manager, and Monitoring and Analytics
- Exposes open interfaces for external users and entities

Janus Network Control Module

- No Broadcast
- Routerless IP
- Non-IP Traffic

- Quality of Service
- NFV Service Chaining
- Security

Flexible Creation of Smart Apps on virtualized Customer Premises Edge

Small SAVI vCPE

- Supports compute and networking virtualization
- Able to host multiple applications
- Connected to the SAVI Smart Edge with VPN technology

- Has all the capabilities provided from the virtualized system in SAVI (e.g. tenant isolation)
- Capable of leveraging advanced Features of SAVI SDI (e.g. NFV Service Chaining)

SAVI vCPE Use Cases

- Gateway for Internet of Things devices
- Web acceleration and service delivery point
 - NFVs such as proxy, firewall, IDS/IPS and VPN services
- Smart home and office
- Connected vehicles
- Smart Transportation
- Smart Cities (lighting, air quality, ..., carbon footprint)

Monitoring CO₂

Sensor Node

Relay Node

Control Room

- Sensor nodes: consists of a carbon dioxide sensor and radio module
- Relay nodes: responsible for forwarding any received packet toward the destination
- Control Room: destination of sensor data and data aggregation point

Research Agenda

- IoT Virtualization
 - Sensors, Actuators, Networks
- SD Fabrics for City-Scale Infrastructure
 - Virtual Slices: Core + Smart Edge + vCPE + vloT
 - Synergy with fiber-based broadband access
 - Synergy with wireless access: LTE, 5G, and more
- IoT-scale data gathering and dissemination
 - Software-defined Information Centric Networking
 - Distributed storage, processing and aggregation
 - Security and Privacy
 - Low-latency and QoS where needed
- Intelligence at Scale
 - Distributed analytics and deep learning

Conclusion

- The SAVI multitier cloud based on SDI can provide flexibility, performance, scalability and cost effectiveness to support smart city applications
- CVST application platform supports creation of smart transportation applications
- Together SAVI & CVST provide a template for smart city application platforms

Thank You!

